

DICT LEVEL I

COMPUTER MATHEMATICS

Time Allowed: 3 hours. MONDAY: 21 May 2018. Answer ALL questions. Marks allocated to each question are shown at the end of the question. Show ALL your workings. **QUESTION ONE** Convert the following numbers to their respective equivalents: (a) 23724₁₀ to binary form. (1 mark) 7189_{10} to base 16. (1 mark) (ii) 275.B02₁₆ to base 10. (2 marks) (iii) (iv) (2 marks) 10 0001 1011 1011 0110 01012 to hexadecimal form. (2 marks) BADCODE₁₆ to binary form. (v) Add the following octal digits: (b) (1 mark) (i) 4 + 3. (1 mark) (ii) 3 + 6. (2 marks) (iii) $45376_8 + 36274_8$. (c) Evaluate the following using complements: (3 marks) A57913₁₆ - 64EE00₁₆ (d) Perform the following binary arithmetic operations: (i) 110.1101 + 1011.101.(1 mark) (1 mark) (ii) 10101010 - 110011. $1011 \div 11.$ (2 marks) (iii) Determine the nine's and ten's complements of the following decimal number: (e) (1 mark) 78923019. (Total: 20 marks) **QUESTION TWO** Find the radix-minus-one (15's) complement and the (16's) complement of: (a) 5D309₁₆. (2 marks) (b) Decode each numeric, encoded in the 5-4-2-1 BCD codes below: (i) 1010 0010 1001. (1 mark) (1 mark) (ii) 1011 0001 0100 1100.

> TD12 Page 1 Out of 3

Find the two's complement of the binary number 1001 1001 (c)

(2 marks)

- Perform the following operations on binary numbers (d)
 - (i) 1010 x 1001.

(2 marks)

 $100001 \div 110$. (ii)

(2 marks)

(e) Solve the following linear equation:

$$\frac{y+2}{3} - 1 + \frac{y}{8} = -\frac{y}{2} + 3$$

(3 marks)

(f) Solve the following set of simultaneous equations using the substitution method:

$$3a - 2b = 11$$

 $5a + 7b = 39$

(3 marks)

Use a truth table to prove that $(A \land B) \Rightarrow A$ is a tautology. (g)

(4 marks)

(Total: 20 marks)

QUESTION THREE

- Write the following types of codes in full and give a two-point description of each:
 - BCD. (i)

(3 marks)

(ii) ASCII. (3 marks)

- Perform the following conversions: (b)
 - (i) 11012 to decimal.

(ii) B2D₁₆ to decimal.

- (c) Use truth table to show that:
 - (i) $(P \rightarrow Q) \lor (Q \rightarrow P)$ is a tautology.

P→Q and ~ P ∨ Q are logically equivalent.

Find the transpose of the following matrix:

- marks)
 (2 marks)

- $X = \left[\begin{array}{ccc} 2 & 4 & -1 \\ 5 & 0 & 2 \end{array} \right]$
- Find the inverse of matrix A where: (e)

$$\mathbf{A} = \left(\begin{array}{cc} 4 & 5 \\ 2 & 3 \end{array} \right)$$

(2 marks)

(2 marks) (Total: 20 marks)

QUESTION FOUR

(d)

Solve for a and b in the following matrices:

$$3 \begin{bmatrix} -a & -4 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ -2 & -b \end{bmatrix} = \begin{bmatrix} 6 & -12 \\ 3 & 0 \end{bmatrix}$$

(4 marks)

(b) Given the following matrices:

$$x = \begin{pmatrix} 0 & -1 \\ 2 & -5 \end{pmatrix}, y = \begin{pmatrix} -3 & 6 \\ 3 & 8 \end{pmatrix}, z = \begin{pmatrix} 1 & 4 \\ -2 & 6 \end{pmatrix}$$

$$\begin{array}{ccc} & \text{Simplify} & x & \left(y+z\right) \\ & & & \end{array}$$

(3 marks)

TD12 Page 2 Out of 3

TD12 Page 3 Out of 3