KASNEB

CIFA PART III SECTION 6

INTERNATIONAL FINANCE

FRIDAY: 25 November 2016.

Time Allowed: 3 hours.

Answer ALL questions. Marks allocated to each question are shown at the end of the question. Show ALL your workings.

OUESTION ONE

- (a) Analyse four components of the financial account as used in the balance of payments of a country. (4 marks)
- (b) Summarise five assumptions of the theory of comparative advantage as postulated by David Ricardo (1817).

(5 marks)

- (c) In an effort to integrate the world trade, a great milestone has been achieved towards globalisation of the world economy. World's businesses are turning to foreign sales and cross-border partnerships as paths towards expansion and consolidation.
 - In relation to the above statement, discuss four events and trends that could have contributed to the reduced restrictions and increased international trade. (8 marks)
- (d) Explain three sources of short-term borrowing that could be used by a multinational corporation to finance its operations. (3 marks)

(Total: 20 marks)

QUESTION TWO

(a) The value of your country's currency has been experiencing a drastic downward decrease in value relative to other major world currencies.

In relation to the above statement, discuss four strategies that could be adopted by the central bank of your country to stabilise the local currency.

(8 marks)

(b) Evaluate four benefits that could accrue to a multinational corporation (MNC) that uses bilateral netting.

(4 marks)

Assume that the following exchange rate information is available between the United States of America (USA) and Britain:

	USA	Britain
Nominal interest rate	4%	6%
Expected inflation rate	2%	5%
Spot rate	-	\$1.13
One year forward rate	-	\$1.10

Required:

- (i) The forward rate of the British pound (GBP) assuming interest rate parity exists between the USA and Britain. (2 marks)
- (ii) The expected spot rate of the GBP in one year assuming the purchasing power parity (PPP) holds between the USA and Britain. (2 marks)
- (iii) The expected spot rate of the GBP in one year assuming the international fisher effect (IFE) holds between the USA and Britain. (2 marks)
- (iv) Describe two methods that could be used to determine whether the purchasing power parity (PPP) exists among countries. (2 marks)

(Total: 20 marks)

CF62 Page 1 Out of 3

QUESTION THREE

- (a) Evaluate three financial techniques that could be used by a multinational corporation to reduce its transaction exposure. (6 marks)
- (b) Jozovina Limited, a Kenyan based multinational firm, is considering investing in a project to be based in South Africa. The project will have an initial capital outlay of 125 million South African Rands (ZAR). The project will have a debt ratio of 60%.

The project is expected to generate the following free cash flows for the next 5 years:

Year	1	2	3	4	5
Net cash flow (ZAR "million")	25	28	30	35	40

Additional information:

1. The economic data between the two countries are as follows:

	Kenya	South Africa
Inflation rate	14%	6%
Bond yield	10.7%	9%
Risk premium	12%	8%
Interest rate	14.5%	12%
Tax rate	30%	25%

- 2. The spot exchange rate is 1 ZAR = KES14.
- 3. The international Beta factor is 0.8.

Required:

(i) The weighted average cost of capital (WACC) of the project.

(3 marks)

(ii) The net present value (NPV) of the project in Kenya shillings (KES).

(10 marks)

(iii) Advise the management of Jozovina Limited on whether to proceed with the project based on your results in (b)(ii) above. (1 mark)

(Total: 20 marks)

QUESTION FOUR

In an international trade forum, one of the facilitators noted that the majority of the developing countries and less developed countries normally have a budgeting deficit where expenditure exceeds revenue.

In relation to the above statement, propose three reasons which could trigger deficit financing in a given country.

(3 marks)

(b) Assess five objectives of the European Union (EU) trading bloc.

(5 marks)

(c) Discuss four operating structures that could help a multinational corporation (MNC) to manage its cash flows.

(4 marks)

(d) Assume the following information between the Canadian dollar (CAD) and the British pound (GBP):

Spot rate of CAD
 90-day forward rate of CAD
 90-day Canadian interest rate
 90-day British interest rate
 2.5%

Required:

- (i) The yield to a British investor who uses covered interest arbitrage. (Assume the investor invests GBP 1,000,000) (4 marks)
- (ii) Propose the market forces that would occur to eliminate any further possibilities of covered interest arbitrage identified in (d)(i) above. (2 marks)
- (e) Distinguish between "tax drag" and "tax haven" in the context of international tax management. (2 marks)

 (Total: 20 marks)

CF62 Page 2

Out of 3

QUESTION FIVE

In order to encourage foreign direct investment (FDI), many governments provide incentives to multinational (a) corporations (MNCs) to set up industries in their host countries.

In relation to the above statement, explain six areas of conflicts that could arise between the MNC and the host (6 marks) government.

(b) Assess five forms of political risk that could impede the performance of a local subsidiary. (10 marks)

Warfen Limited believes that future real interest rate movements will affect exchange rates and it has applied (c) regression analysis to analyse historical data so as to assess the relationship. The corporation intends to use regression coefficients derived from this analysis along with forecasted real interest rate movements to predict exchange rates in the future.

Required:

In relation to the above statement, explain four limitations of using regression analysis forecasting method in predicting the foreign exchange rate. (4 marks)

(Total: 20 marks)

Present Value of 1 Received at the End of *n* Periods: $PVIF_{r,n} = 1/(1+r)^n = (1+r)^{-n}$

			•																	
Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%
1	.9901	.9804	.9709	.9615	.9524	.9434	.9346	.9259	.9174	.9091	.8929	8772	.8696	.8621	.8475	.8333	.8065	.7813	.7576	.735
2	.9803	.9612	.9426	.9246	.9070	.8900	.8734	.8573	.8417	.8264	.7972	.7695	.7561	.7432	.7182	.6944	.6504	.6104	5739	.540
3	.9706	.9423	.9151	.8890	.8638	.8396	.8163	.7938	.7722	.7513	.7118	.6750	.6575	.6407	.6086	.5787	.5245	.4768	.4348	397
4	.9610	.9238	.8885	.8548	.8227	.7921	.7629	.7350	.7084	.6830	.6355	.5921	.5718	.5523	.5158	4823	4230	.3725	.3294	.292
5	.9515	.9057	.8626	.8219	.7835	.7473	.7130	.6806	.6499	.6209	.5674	5194	4972	.4761	.4371	.4019	.3411	.2910	2495	.214
6	.9420	.8880	.8375	.7903	.7462	.7050	.6663	.6302	.5963	.5645	.5066	.4556	.4323	.4104	.3704	.3349	.2751	.2274	.1890	.1586
7	.9327	.8706	.8131	.7599	.7107	.6651	.6227	.5835	.5470	.5132	.4523	.3996	.3759	.3538	.3139	.2791	.2218	:1776	1432	.116
8	.9235	.8535	.7894	.7307	.6768	.6274	.5820	.5403	.5019	.4665	.4039	.3506	.3269	.3050	.2660	.2326	.1789	.1388	.1085	.085
9	.9143	.8368	.7664	.7026	.6446	.5919	.5439	.5002	.4604	.4241	.3606	3075	.2843	.2630	.2255	.1938	.1443	.1084	.0822	.0628
10	.9053	.8203	.7441	6756	.6139	.5584	.5083	.4632	.4224	.3855	.3220	.2697	.2472	.2267	1911	.1615	.1164	.0847	.0623	046
. 11	.8963	8043	.7224	.6496	.5847	.5268	.4751	.4289	.3875	.3505	.2875	.2366	.2149	.1954	.1619	.1346	.0938	.0662	.0472	.0340
12	.8874	.7885	.7014	.6246	.5568	.4970	.4440	.3971	.3555	.3186	.2567	.2076	.1869	1685	.1372	.1122	.0757	.0517	.0357	.025
13	.8787	.7730	.6810	.6006	.5303	.4688	.4150	.3677	.3262	.2897	.2292	.1821	.1625	.1452	.1163	.0935	.0610	.0404	.0271	.018
14	.8700	.7579	.6611	.5775	.5051	.4423	.3878	.3405	.2992	.2633	.2046	.1597	.1413	.1252	.0965	.0779	.0492	.0316	.0205	.013
15	.8613	.7430	.6419	.5553	.4810	.4173	.3624	3152	.2745	.2394	.1827	.1401	.1229	.1079	.0835	.0649	.0397	.0247	.0155	009
16	.8528	.7284	.6232	.5339	.4581	.3936	.3387	.2919	.2519	.2176	.1631	.1229	.1069	.0930	.0708	.0541	.0320	.0193	.0118	.007
17	.8444	.7142	.6050	.5134	.4363	.3714	.3166	.2703	.2311	.1978	.1456	.1078	.0929	.0802	.0600	.0451	.0258	.0150	.0089	.005
18	.8360	.7002	5874	.4936	.4155	.3503	.2959	.2502	.2120	.1799	.1300	0946	.0808	.0691	.0508	.0376	.0208	.0118	.0068	.003
19	.8277	.6864	.5703	.4746	.3957	.3305	.2765	.2317	.1945	.1635	.1161	0829	.0703	.0596	.0431	.0313	.0168	.0092	.0051	.002
20	.8195	.6730	.5537	.4564	.3769	.3118	.2584	.2145	.1784	.1486	1037	.0728	.0611	.0514	.0365	.0261	.0135	.0072	.0039	.002
25	.7798	.6095	.4776	.3751	.2953	.2330	.1842	.1460	.1160	.0923	.0588	.0378	.0304	.0245	.0160	.0105	.0046	.0021	.0010	000
30	.7419	.5521	.4120	.3083	.2314	.1741	.1314	.0994	.0754	.0573	.0334	0196	.0151	.0116	.0070	.0042	.0016	.0006	.0002	.000
40	.6717	4529	.3066	.2083	.1420	.0972	.0668	0460	.0318	.0221	.0107	.0053	.0037	.0026	.0013	.0007	.0002	.0001		
50	.6080	.3715	.2281	.1407	.0872	.0543	.0339	.0213	.0134	.0085	.0035	.0014	.0009	.0006	.0003	.0001			_	·
60	.5504	.3048	.1697	.0951	.0535	.0303	.0173	.0099	.0057	.0033	.0011	.0004	.0002	.0001					·	

^{*} The factor is zero to four decimal places

Present Value of an Annuity of 1 Per Period for n Periods:

$$PVIF_{rt} = \sum_{t=1}^{n} \frac{1}{(1+r)^{t}} = \frac{1-\frac{1}{(1+r)^{t}}}{r}$$

					•	•												<u> </u>	_
Payments	1%	2%	3%	4%	5%	6%	7%	8%	9%	404	4.00						V.	<i>></i> *	
								0 /4	3%	10%	12%	14%	15%	16%	18%	20%	4 24%	28%	32%
1	0.9901	0.9804	0.9709			0.9434	0.9346	0.9259	0.9174	0.9091	0.8929	0.8772	0.8696	0.8621	0.8475	0.8333	0.8065	0.7813	0.7576
2	1.9704	1.9416			1.8594	1.8334	1.8080	1.7833	1.7591	1.7355	1.6901	1.6467	1.6257	1.6052	1.5656	1,5278	1.4568		1.3315
3	2.9410	2.8839	2.8286		2.7232	2.6730	2.6243	2.5771	2.5313	2.4869	2.4018	2.3216	2.2832	2.2459	2.1743	2.1065	1.9813	1.8684	1.7663
4	3.9020	3.8077			3.5460	3.4651	3.3872	3.3121	3.2397	3.1699	3.0373	2.9137	2.8550	2.7982	2.6901	2.5887	2.4043		2.0957
5	4.8534	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897	3.7908	3.6048	3.4331	3.3522	3.2743			2.7454		2.3452
6	5.7955	5,6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229	4.4859	4.3553	4.1114	3.8887	3.7845	3.6847	3.4976	3.3255	3.0205	2.7504	2.5342
7	6.7282	6.4720	6.2303	6.0021	5.7864	5.5824	5.3893	5.2064	5.0330	4.8684	4.5638	4.2883	4.1604	4.0386	3.8115	3.6046	3.2423	2.7394	
8	7.6517	7.3255		, 6.7327		6.2098	5.9713	5.7466	5.5348	5.3349		4.6389	4.4873	4.3436	4.0776	3.8372	3.4212		2.6775
9	8.5660	8.1622		7.4353		6.8017	6.5152	6.2469	5.9952	5.7590			4.7716	4.6065	4.3030	4.0310	3.5655		2.7860
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177	6.1446			5.0188	4.8332		4.1925	3.6819	3.1842 3.2689	2.8681 2.9304
11	10.3676	9.7868	9.2526	8.7605	8.3064	7.8869	7.4987	7.1390	6.8052	6.4951	5.9377	5 4527	5.2337	5.0286	4.6560	4.3271	3.7757	2 2254	
12	11.2551	10.5753	9.9540	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607		6.1944	5.6603	5.4206	5.1971	4.7932	4.4392		3.3351	2.9776
13	12.1337	11.3484	10.6350	9.9856	9.3936	8.8527	8.3577	7.9038	7.4869	7.1034	6.4235	5.8424	5.5831	5.3423	4.9095	4.5327	3.8514	3.3868	3.0133
14				10.5631		9.2950	8.7455		7.7862			6.0021	5.7245	5.4675	5.0081		3.9124	3.4272	3.0404
15	13.8651	12.8493	11.9379	11.1184	10.3797	9.7122	9.1079	8.5595	8.0607	7.6061			5.8474	-	5.0081	4.6106 4.6755	3.9616 4.0013	3.4587 3.4834	3.0609 3.0764
16	14.7179	13.5777	12.5611	11.6523	10.8378	10.1059	9.4466	8.8514	8.3126	7.8237	6 9740	6.2651	5.9542	5.6685	5.1624	4.7296	4 0000		
17	15.5623	14.2919	13,1661	12.1657	11.2741	10.4773	9.7632	9.1216	8.5436	8 0216	7.1196	6.3729	6.0472	5.7487	5.2223		4.0333	3.5026	3.0882
18	16.3983	14.9920	13,7535	12.6593	11.6896	10.8276	10.0591	9.3719	8.7556	8.2014		6.4674	6.1280	5.8178	5.2732	4.7746	4.0591	3.5177	3.0971
19	17.2260	15.6785	14.3238	13.1339	12.0853	11,1581	10.3356	9.6036	8.9501	8.3649	7.3658	6.5504	6.1982	5.8775		4.8122	4.0799	3.5294	3 1039
20	18.0456	16.3514	14.8775	13.5903	12.4622	11.4699	10.5940	9.8181	9.1285	8.5136	7.4694	6.6231	6.2593	5.9288	5.3162 5.3527	4.8435 4.8696	4.0967 4.1103	3.5386 3.5458	3.1090
														0.0200	0.002	4.0000	4.1103	3.5456	3 1129
25	22.0232	19.5235	17.4131	15.6221	14.0939	12.7834	11.6536	10.6748	9.8226	9.0770	7.8431	6.8729	6.4641	6.0971	5.4669	4.9476	4.1474	3.5640	1 1220
30	25.8077	22.3965	19.6004	17.2920	15.3725	13.7648	12.4090	11.2578	10.2737	9 4269	8.0552	7.0027	6.5660	6.1772	5.5168	4.9789	4.1601	3.5693	3 1220
40	32.8347	27.3555	23,1148	19.7928	17.1591	15.0463	13.3317	11.9246	10.7574	9.7791	8 2438	7.1050	6.6418	6.2335	5.5482	4.9966	4.1659	3.5693	
50	39.1961	31.4236	25.7298	21.4822	18.2559	15.7619	13.8007	12,2335	10.9617	9 9148	8 3045	7 1327	6 6605	6.2463	5.5541	4.9995	4.1666	3.5712	
60	44.9550	34.7609	27.6756	22.6235	18.9293	16.1614	14.0392	12.3766	11,0480	9.9672	8.3240	7,1401	6.6651		5.5553		4.1667	3.5714	3.1250 3.1250
												-			500	4.0000	7.1307	3.3714	3 1 2 3 0

ing style Style 1981